SABCSA1B1C1=(ABA1B1)2\dfrac{S_{ABC}}{S_{A_1B_1C_1}}=\left(\dfrac{AB}{A_1B_1}\right)^2SA1B1C1SABC=(A1B1AB)2.
Первый признак △ABC∼△A1B1C1 ⟸ ∠A=∠A1, ∠B=∠B1 \triangle ABC \sim \triangle A_1B_1C_1 \impliedby \angle A=\angle A_1,~\angle B=\angle B_1△ABC∼△A1B1C1⟸∠A=∠A1, ∠B=∠B1.
Второй признак △ABC∼△A1B1C1 ⟸ {∠A=∠A1ABA1B1=BCB1C1 \triangle ABC \sim \triangle A_1B_1C_1 \impliedby \begin{cases} \angle A=\angle A_1 \\ \dfrac{AB}{A_1B_1}=\dfrac{BC}{B_1C_1} \end{cases}△ABC∼△A1B1C1⟸⎩⎨⎧∠A=∠A1A1B1AB=B1C1BC.
Третий признак △ABC∼△A1B1C1 ⟸ ABA1B1=BCB1C1=ACA1C1 \triangle ABC \sim \triangle A_1B_1C_1 \impliedby \dfrac{AB}{A_1B_1}=\dfrac{BC}{B_1C_1}=\dfrac{AC}{A_1C_1} △ABC∼△A1B1C1⟸A1B1AB=B1C1BC=A1C1AC.
Last updated 12 days ago